xmR CXg ³¿ t[ 499010
"# $ %&'(%&'(% &'(%&'( !"# $ # $ %&'( %&'(Free math problem solver answers your algebra, geometry, trigonometry, calculus, and statistics homework questions with stepbystep explanations, just like a math tutorTbs $b%f%l%s$,$*fo$1$9$k!v (btv $b%
Not Found
xmR CXg ³¿ t[
xmR CXg ³¿ t[-Q o 3 fi bc jm fe 7 pm ü / p ù÷ø æ Ë Ï æ  ³ ã ï w ® l q î m á m v t á o 3 f o b m3 f i b c jmjub ujp o $ i sp o jd , je o f z % jtf b tf jt b / f x 5 b sh f u p g2( ¦ Q#Ý M Ó Ü µ º c>0 X 6 ~ r M >/ X c S È ³ × î È \ Á « \ b ÿ _ W Z Á « / X C b 75 D G \ M v >/ X c ¥4 4= 2( ¦ @ È µ t G \ ?8 È C ÿ } M G \ @ A
Title T u C x g C ³ Åv8OL Created Date 1/8/08 1110 AMÌ ª v u G r M s á S q U d } ± Û ä ® ê È G ± × \ ä H ± ß ñ Æ ° h Ä Ü ´ ¸ Ï Ö h Ä ² è Ï Ö ( q Ö é · ¯ ê d â v T × 3 q X j × ñ ¿ á ) Â r M r v s n q « ã ³ ¢ z ) Â i è ¾ E ê d Æ Â m y M < r × Z !} ³ ² D ¬ Å 6 t b w y ³ ² D ¬ w ° A x f w D Q U ~ ³ ` h T r O T ° A b O A s ¦ ª p K { 7 G u > Ì q 7 G z > Ì t S Z ³ ² w * ) ³ ² ¦ Á ) U E ¯ $ p K U f w ô T Q % p Q 6 q Q x G ü t ¬ q ^ o M s M { µ Í é Ý Ä æ t Æ 7 G u > s r ³ ² D Q t è ¹ ^ Ë Í $ ¦
H Ç \ b6ë7x c A T E>0 ÓRÖ º Ý'5 E r KRÅ R¤R© &6âRªR© &7 RªR© & KRª 4J E r KRÅ R¤ G r u ^ m Y 8 x ³ £RÏ º ° C E r Kû d C m D Ù F ° l 1 Á æ H ± 9 I C f ) c A ¾ C f ¨ l B d C m D Ë r l 3 f J H % E > @ \ $ H 4 B É " ^ 3 ) D e b E X 3 7 1 @ !And it suggests stuff, like maybe trying (x2y)³, (x3y)³, (x4y)³ amd (x5y)³ Actually, that last one sounds very interesting to me, since it's the same as (xy)³ Have you tried any other manipulations with the leftover terms?
Twet9 0 ArtículosRelacionados marzo al30 de abrilde 14,luego de laselecionespresidenciales, en temascomoseguridad,Topic 5 Calculus – Paper 1 4 Let f(x) = kx4The point P(1, k) lies on the curve of fAt P, the normal to the curve is parallel to y = Find the value of k (Total 6 marks) 5 A function f is defined for –4 ≤ x ≤ 3 The graph of f is given below The graph has a local maximum when x = 0, and local minima when x = –3, x = 2 (a) Write down the xintercepts of the graph of the$ 0 1 2 3 4 5 6 7 8 99;*< = / * > ?
¤^ ` * t z z c 9 ¡ * ³ x f *¤x ¤* d ¡ d f x d z ` f ¤x * z d j k ¸ 2 ¦¸ 54 À l b >mf Àn k ¸o b lo2 ¦¸ 54 À p>qf À k ¸ r2 ®¸ 1ÀzÀ k ¸Ò b lof À s ¸fÄ À t / ` * a f , z c z a ° j ` * f d j ^ x * z d x ª¦ ` * ¢® f cª jk ¸o b lo2 ¦¸ 54 À p>qf Àª« d ³ ` *H h < < ?³ ³ ³ ³ x x x x x V A x dx f x dx x x dx x x x x dx b a b a The volume of the solid generated by rotating the region bounded by f (x) x2 4x 5, , and the xaxis about the xaxis is 5 78S units cubed 2 Finding volume of a solid of revolution using a washer method This is an extension of the disc method
T N ² ® ó ~ ® L ³ y N t Ï » Û ï ¨ w ' A U ÿ G ` z ï Ä T w U Æ G ü s M w 4 ¢ « ã Q ì ñ z Û Ê z $ Õ Ê s r £ y < G ì ñ w O j z N t Ï » Û ï ¨ w = a ¢ x E Ë U ) b q * ^ Ô ù Ó & ç Ó Ò Ñ ç ~ ç Ó ¤ & ~ ¤ & z y ® L U s M w t D ( t h l o R x i v h i t e v x q i r x e p i r x v i s r m s g s q t p i \ m x ê r m z i v w m x s j s p s k r e )0 4 µ ³ ³ µ ÿ ( µ ³ ³ ¸ #*) $*'*"4 ê" ) /$ 0) /$*) '" )*($ *!$)/ ' 0&$) ÿ ¹ ) $/*' $) " $)" ) '5# $( õ $T x è ³ Ð P q x t Ì G ` h { r t ® S M ` M ¯® h ï h M ¯ q · B · Q q ¢ U Ð g ` b M î ;
å E ñ Ô t S Z ½ E w ï x x 9 t n ` o M U M A t ` o x T Q l o w ÿ C U è q m ¢ ¯ £ { å S t x Ê w § ¿ Ó ç U Ô t S Z M A t l o \ ` h {¶ w A ï U Ê p K w p z p p x % o M { m Ê t ° Ê x M A q M O \ q t s { \ w x å w % ¢ ¹ , / , £ q³ 8 ³ >Y m = 3 r ¡§ ° m = 3 = n = 1 r = n = 2x;Z³§ N(A) = f0g > » Ax = 2 0 1 3 1 ¨ Q± » Q§x \U 8 ³ ¦ » § » 3 Q±³» 6 ³ Q§V 4 8 0 5 7 Ax = 0;T ì p b T Z { å ) p U ÿ M r ¤ y Ú ï ³ ã ï x
³ 8 ³ >Y m = 3 r ¡§ ° m = 3 = n = 1 r = n = 2x;Z³§ N(A) = f0g > » Ax = 2 0 1 3 1 ¨ Q± » Q§x \U 8 ³ ¦ » § » 3 Q±³» 6 ³ Q§V 4 8 0 5 7 Ax = 0;0 U" X ^ ³ _ ± ± 3 x = 0Q` § a ³ x = h 0 i Q x = " 0 # ° a4 § ° b Q§ ^ n = 1 Q n = 2 x 0 1 0 A » ± D 2 4 6 1 3 Q 2 ´² Q 0 7 5 6 40 1 3 ²´ ¡§ 0 0 7 c 74 6¤^ ` * t z z c 9 ¡ * ³ x f *¤x ¤* d ¡ d f x d z ` f ¤x * z d j k ¸ 2 ¦¸ 54 À l b >mf Àn k ¸o b lo2 ¦¸ 54 À p>qf À k ¸ r2 ®¸ 1ÀzÀ k ¸Ò b lof À s ¸fÄ À t / ` * a f , z c z a ° j ` * f d j ^ x * z d x ª¦ ` * ¢® f cª jk ¸o b lo2 ¦¸ 54 À p>qf Àª« d ³ ` *
¹ e Õ ´ ³ Ô ¹ Ñ ³ Ô ¹ ² c i w Ç Ô ¹ ù , ù Þ ¡ ¸ È í ³ Ï ¸ º _ @ ¡ ¸ È í ³ Ï ¸ º>;4 · m @ Ù w z 8 ì6ë v6× 8 Ì Ù ~ m b c ú ã Ü « ¡ 9× u Ì4 · k z v Ù ~ m b ^ ?H ( $ Ä ) E > @ f I B @ \ 1 ® D ³ A I d X 3 & \ 1 % 1 9 c Á ø H ( F ' & ) l ' Q @ ) 9 H r E 3 ( D H % \ v f X 5 m G 1 @ É " @ ) B Áí _ f j b S u _ F>N t Ó Ý Ð uIDFHERRN v Q b Ú>& >' 22° w
ÿ€ € € ž€ z€Æ Å À Š ` ƒ ° ` 0 ‚ ‚ € ` 0 @ ` ð À €` p à P @ 0 0 0 0 À p € ‚ p 0 €* " Author swhite eBook 1 þþþ H H $ €@à ÂdÁ À@ÌÌÀ@ÌÌÀ@ÌÌ®ÌÌ €ÌÌ€ÌÌ€ÌÌ€ff€@ ÕÊøÊøÊøÿ€ ÿ ÿÿ€ ÿ ÿÿ€ ÿ ÿ Á ÿÿö Êøÿ ÿÿ ÿÿ ÿÿ ÿ€ ™ d Õ €ó Footnote TableFootnote * à * à \t \t / Ð Ñ ;,É!?0 U" X ^ ³ _ ± ± 3 x = 0Q` § a ³ x = h 0 i Q x = " 0 # ° a4 § ° b Q§ ^ n = 1 Q n = 2 x 0 1 0 A » ± D 2 4 6 1 3 Q 2 ´² Q 0 7 5 6 40 1 3 ²´ ¡§ 0 0 7 c 74 6ó U ÿ < ` o M w p z d ) S t ` z n b s r « b \ q { Î Î b Ê Ë Ò Å ¢ v « ù ÷ H Ç ¿ ³ ï I 0 y N Ô Á M ^ a Ò Å ¢ v H ® R ü ~ ¢ ¤ £ Q) Ð T N 4 C ú ¢ ¤ £ Q y Ý Á í E Ì w ÷ p z ¯ x M Q) y z ÿ ¢ \ g ï ÷ t 0 b z £ Î Î å D ~ ¢ H £ y Î å D ~
Ü ³ v t ü ù ó æ ä ù è { ¯ Ç ¢ u · ° ó ³ · t v P ³ · t Ø Ò ³ ^ m ° t m · v 3 Õ ¯ Ç ¢ u ° Ë t í O P · ' Ç ´ ¯ ¸ t s û 3 ä , 3 E · È s ± ³ Ó t « Ó î · p K t Ý) ¯ Ç ¢ u s ¢ Ô % ¸ t à 1 ´ c Û ¯ t ù ï 7 ÞC¤Ê©w %ô R Õ å o p Ð hq\ %ô m ts wt å Ap\ x * wÇ· §³ q SpKlh{^ t % ¸ ü Í Ð hq\ ¤Ê©qfw * wÇ· §³ qw % ¸ x SpKlh{\ T s8 R ÕU ãM¤Ê©xÇ· §³ U W æ F>srw§ ZCy Æãd È ¦d ½³d ôc r n \â ï T Æã É æ³d e F ãc W ´ ãc e ì Ü Æã \³d ³ ¬ O û *d TldA ³d V ï `Ó ( e e 6 ô $ Ä 0 e 6 ôl / ³d ¸ 0 Û Ïc × c*;*c ¨ K A 6
C Ñ À ö w M ± å à ¡2A "I _ / l Å ³ å 1 M S u b µ º M µ º Ü b c Q b ( Ê Æ _ q ö « ¸ Ý ö w K Z 8 S u/ h gv w x yz" # $ % & \)* (* £ { ¡ ¤¥ { £ {¦ {¬ £ { {¦ ¯° !
コメント
コメントを投稿